m at h . D G ] 1 A ug 2 00 6 EXISTENCE AND UNIQUENESS FOR P - AREA MINIMIZERS IN THE HEISENBERG GROUP

نویسنده

  • PAUL YANG
چکیده

In [3], we studied p-mean curvature and the associated p-minimal surfaces in the Heisenberg group from the viewpoint of PDE and differential geometry. In this paper, we look into the problem through the variational formulation. We study a generalized p-area and associated (p-) minimizers in general dimensions. We prove the existence and investigate the uniqueness of minimizers. Since this is reduced to solving a degenerate elliptic equation, we need to consider the effect of the singular set and this requires a careful study. We define the notion of weak solution and prove that in a certain Sobolev space, a weak solution is a minimizer and vice versa. We also give many interesting examples in dimension 2. An intriguing point is that, in dimension 2, a C-smooth solution from the PDE viewpoint may not be a minimizer. However, this statement is true for higher dimensions due to the relative smallness of the size of the singular set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. D G ] 1 0 Ja n 20 06 EXISTENCE AND UNIQUENESS FOR P - AREA MINIMIZERS IN THE HEISENBERG GROUP

In [3], we study p-mean curvature and associated p-minimal surfaces in the Heisenberg group from the viewpoint of PDE and differential geometry. In this paper, we look into the problem through the variational formulation. We study a generalized p-area and associated (p-) minimizers in general dimensions. We prove the existence and elaborate on the uniqueness of minimizers. Since this is reduced...

متن کامل

ar X iv : m at h - ph / 0 60 80 46 v 1 1 8 A ug 2 00 6 A MULTI - DIMENSIONAL LIEB - SCHULTZ - MATTIS THEOREM

For a large class of finite-range quantum spin models with half-integer spins, we prove that uniqueness of the ground state implies the existence of a low-lying excited state. For systems of linear size L, of arbitrary finite dimension, we obtain an upper bound on the excitation energy (i.e., the gap above the ground state) of the form (C log L)/L. This result can be regarded as a multi-dimensi...

متن کامل

ar X iv : 0 71 2 . 31 03 v 1 [ m at h - ph ] 1 9 D ec 2 00 7 STATIONARY SOLUTIONS OF THE SCHRÖDINGER - NEWTON MODEL - AN ODE APPROACH

We prove the existence and uniqueness of stationary spherically symmetric positive solutions for the Schrödinger-Newton model in any space dimension d. Our result is based on a careful analysis of the corresponding system of second order differential equations. It turns out that d = 6 is critical for the existence of finite energy solutions and the equations for positive spherically symmetric s...

متن کامل

2 4 N ov 2 00 7 OPTIMAL TRANSPORTATION UNDER NONHOLONOMIC CONSTRAINTS

We study Monge’s optimal transportation problem, where the cost is given by optimal control cost. We prove the existence and uniqueness of an optimal map under certain regularity conditions on the Lagrangian, absolute continuity of the measures with respect to Lebesgue, and most importantly the absence of sharp abnormal minimizers. In particular, this result is applicable in the case of subriem...

متن کامل

2 00 7 Control Theory and Optimal Mass Transport

We study Monge’s optimal transportation problem, where the cost is given by optimal control cost. We prove the existence and uniqueness of an optimal map under certain regularity conditions on the Lagrangian, absolute continuity of the measures, and most importantly the absence of sharp abnormal minimizers. In particular, this result is applicable in the case of subriemannian manifolds with a 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006